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Abstract

A new perfectly matched layer (PML) formulation for the time domain finite element method is described and tested

for Maxwell’s equations. In particular, we focus on the time integration scheme which is based on Galerkin’s method

with a temporally piecewise linear expansion of the electric field. The time stepping scheme is constructed by forming a

linear combination of exact and trapezoidal integration applied to the temporal weak form, which reduces to the well-

known Newmark scheme in the case without PML. Extensive numerical tests on scattering from infinitely long metal

cylinders in two dimensions show good accuracy and no signs of instabilities. For a circular cylinder, the proposed

scheme indicates the expected second order convergence toward the analytic solution and gives less than 2% root-mean-

square error in the bistatic radar cross section (RCS) for resolutions with more than 10 points per wavelength. An

ogival cylinder, which has sharp corners supporting field singularities, shows similar accuracy in the monostatic RCS.
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1. Introduction

The perfectly matched layer (PML) is very popular and efficient for grid truncation of open-region

problems. The PML concept was first introduced by B�erenger [1] in the context of solving Maxwell’s
equations. The original formulation by B�erenger was implemented in terms of the finite-difference time-

domain (FDTD) [2] scheme and it involved a splitting of the electric and magnetic field components ex-

pressed in the Cartesian coordinate system. Chew and Weedon [3] interpreted the PML as a complex

coordinate stretching, which is based on analytic continuation of Maxwell’s equations to complex space.
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Shortly thereafter, Sacks et al. [4] used tensorial permittivity and permeability in Maxwell’s equations to

construct a PML. These three PML formulations are closely related [5–7] to each other. The split field

formulation and anisotropic material formulation have been used extensively for time domain computa-
tions, mainly implemented in the context of the FDTD scheme. A compilation of articles on the PML

associated with the FDTD scheme can be found in the book [8] by Taflove. In addition to formulations

which are based on Cartesian coordinates, the PML can be formulated in cylindrical and spherical coor-

dinate systems [9–11]. Apart from situations involving electromagnetic wave phenomena, the PML has

been used successfully to truncate grids for wave problems in e.g. acoustics and mechanics.

The finite element method (FEM) [12] can handle unstructured grids that allow for accurate modeling of

complex boundaries and local mesh refinement, which is challenging to treat within the framework of the

FDTD scheme. The anisotropic material formulation of the PML suits the FEM well and it has mainly
been used for computations in the frequency domain [13–16]. Tsai et al. [17] presented a time domain FEM

scheme based on a modified anisotropic material, where the frequency dependence of the PML is ap-

proximated in an intuitive way. Their work is closely related to a non-dispersive formulation presented by

Mathis [18]. However, the dispersive characteristics of the PML are important for a high level of absorption

within a broad frequency band. Jiao et al. [19,20] worked on formulations for the time domain FEM which

capture the frequency dependence of the PML accurately, where the dispersive characteristics are expressed

in terms of recursive convolutions [25,8] involving the sought field. The two-dimensional algorithm [19] is

based on the split field equations of B�erenger, where the spatial dependence of the PML conductivity is
neglected. This scheme and the three-dimensional algorithm [20] evaluate the convolutions by exact inte-

gration under the assumption that the field is piecewise constant with respect to time, or trapezoidal in-

tegration if the field is assumed to be piecewise linear in time. The time integration procedure [20] mixes the

Newmark scheme [26] and backward Euler. These are employed for the integration of the system of or-

dinary differential equations and auxiliary variables, respectively. Jiao et al. [19,20] also provide a stability

analysis of their PML formulations for the time domain FEM. For the PML combined with the FDTD

scheme based on exponential time differencing and standard time-averaging, Petropoulos [21] evaluated

stability and accuracy in terms of the relaxation time scales associated with the electric and magnetic
conduction currents that are present in the PML. Issues concerning the stability of the PML for the

continuous Maxwell’s equations are discussed in terms of symmetry by Turkel and Yefet [22], anisotropy

by B�ecache et al. [23] and causality by Teixeira and Chew [24].

In this article, we develop and test a new formulation for the FEM augmented with the PML in the

context of the time dependent Maxwell’s equations. The new scheme is inspired by the work by Jiao et al.

[20], which can be derived from Maxwell’s equations in the frequency domain with a PML represented by

dispersive anisotropic materials [4]. Galerkin’s method is used for the spatial discretization where the

electric field is expanded in terms of edge elements [27]. The problem is then moved to the time domain and
we use FEM concepts for the temporal discretization by introducing a piecewise linear temporal depen-

dence for the electric field and employing Galerkin’s method to construct the time integration scheme. The

weak formulation with respect to time is evaluated by both exact and trapezoidal integration and we form a

linear combination of the two, which is known as tunable integration [28]. This time stepping scheme

specializes to the well-known Newmark scheme [26] in the case without PML and it treats the convolutions

appearing in the PML region consistently. All convolutions are evaluated recursively by exact integration

given that the field is a piecewise linear function in time. We emphasize that the proposed algorithm uses its

time integration scheme in a consistent manner throughout the entire computational domain for all
quantities in the continuous problem. Extensive numerical tests demonstrate that the new time stepping

scheme can handle a very large number of time steps in a stable way. Galerkin’s method in conjunction with

a piecewise linear time dependence for the unknown field has been used successfully by Abboud et al. [29]

for a stable solution of the retarded potential integral equations. We test our new formulation on radar

cross section (RCS) computations in two dimensions. The RCS computations deal with infinitely long
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metal cylinders of circular and ogival cross sections. It should be emphasized that the PML is directly

applicable to both the scattered and the total field formulation of scattering problems as well as to radiating

structures.
2. Formulation

The new time domain FEM formulation is demonstrated for the PML expressed in Cartesian and polar

coordinates and, here, we focus on two-dimensional problems. Given a scatterer or radiating structure, the

outward propagating wave is absorbed by a PML of finite thickness. We discretize the PML region by

quadrilaterals and the PML is backed by a homogeneous Dirichlet boundary condition. The remaining part
of the computational domain is discretized by triangles and/or quadrilaterals. A typical discretization is

shown in Fig. 1 for a scatterer with the shape of a circular cylinder, where the computational domain is

truncated by a PML tailored for polar coordinates.

2.1. Frequency domain

The derivation of our formulation is based on the PML interpreted as an anisotropic material [4]. For

Maxwell’s equations r�~~l�1r�~E þ s2~~�~E ¼~0 with the Laplace transform variable s ¼ aþ ix, we expand
the electric field in terms of linear edge elements ~Nj and use Galerkin’s method to derive the weak formZ

S
r
�

� ~Ni

�
�~~l�1 � r

�
�~E

�
þ s2~Ni �~~� �~E dS ¼ 0; ð1Þ

where we assume that the scatterer is a perfect electric conductor (PEC) and that the PML enclosing the

scatterer is terminated by a homogeneous Dirichlet boundary condition. The weak form can be adapted to

account for a variety of boundary conditions and sources. The anisotropic material parameters in Eq. (1)

are given by ~~l ¼ l0
~~K and~~� ¼ �0

~~K, where
Fig. 1. Discretization for circular cylinder with a PML in polar coordinates.
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~~K ¼ û
cv
cu
ûþ v̂

cu
cv
v̂þ ẑcucvẑ; ð2Þ

cu ¼ 1þ s�1bu and cv ¼ 1þ s�1bv. This expression can be used for the PML formulated in both Cartesian

and polar coordinates [11]. In Cartesian coordinates, we substitute x for u and y for v which gives

bxðxÞ ¼ ��1
0 rxðxÞ and byðyÞ ¼ ��1

0 ryðyÞ. Similarly, we replace u by r and v by / for the PML in polar co-

ordinates, where brðrÞ ¼ ��1
0 rðrÞ and b/ðrÞ ¼ ð�0rÞ�1 R r

0
rðr0Þ dr0. In the physical region, which is void of the

PML, we have cu ¼ cv ¼ 1 and
~~K reduces to the unity tensor.
2.2. Time domain

The time domain counterpart to Eq. (1) is obtained by the inverse Laplace transform, which gives a

system of coupled ordinary differential equations (ODEs) with ~Eð~r; tÞ ¼~0 for t6 0. The ith ODE is ex-
pressed asX

j

Sij
h

þ Szz
ij þMij þ Bij þ Buu

ij þ Bvv
ij

i
¼ 0; ð3Þ

where the indices i and j refer to spatial degrees of freedom associated with the edge elements. The terms in

Eq. (3) are given by

Sij ¼
Z
S
r

�
� ~Ni � r � ~Nj dS

�
Ej; ð4Þ

Szz
ij ¼

Z
S
r� ~Ni � ẑ u�1

zz � Ej

� �
ẑ � r � ~Nj dS; ð5Þ

Mij ¼
Z
S

~Ni � ~Nj dS
� �

o2t
c2

Ej; ð6Þ

Bij ¼
Z
S

~Ni � û
bv � bu

c
û

��
þ v̂

bu � bv

c
v̂
�
� ~Nj dS

�
ot

c
Ej; ð7Þ

Buu
ij ¼

Z
S

~Ni � û uuu �
ot

c
Ej

� �� �
û � ~Nj dS; ð8Þ

Bvv
ij ¼

Z
S

~Ni � v̂ uvv �
ot

c
Ej

� �� �
v̂ � ~Nj dS; ð9Þ

where c is the speed of light, the convolution operator is denoted by an asterisk

uuuð~r; tÞ ¼ � bv � bu

c
bue

�butHðtÞ; ð10Þ

uvvð~r; tÞ ¼ � bu � bv

c
bve

�bvtHðtÞ; ð11Þ

u�1
zz ð~r; tÞ ¼

b2
u

bv � bu
e�but

�
þ b2

v

bu � bv
e�bvt

�
HðtÞ ð12Þ

and Heaviside’s step function is denoted by HðtÞ. Thus, the electric field is expressed as
~Eð~r; tÞ ¼

P
EjðtÞ~Njð~rÞ where the time dependence of the coefficients EjðtÞ remains to be discretized. Note

that the operators in Eqs. (4), (6) and (7) are factorized into a spatial and a temporal part. However, this is

not possible for the operators in Eqs. (5), (8) and (9) due to the convolutions of functions with both spatial

and temporal dependence.
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2.3. Temporal discretization

We use a uniform discretization with respect to time and the time step is denoted Dt. Express the co-
efficient EjðtÞ as a piecewise linear function, i.e. EjðtÞ ¼

P
m E

m
j T

mðtÞ, where Em
j is the unknown which

corresponds to EjðtÞ evaluated at t ¼ mDt for m ¼ 1; 2; . . . Here, TmðtÞ is a piecewise linear basis function

which satisfies TmðnDtÞ ¼ 0 for n 6¼ m and T mðmDtÞ ¼ 1.

Convolutions of the type wjð~r; tÞ ¼ uð~r; tÞ �A½Ej�ðtÞ, which are found in Eq. (3), can be evaluated re-

cursively for uð~r; tÞ ¼ ae�bt, where a and b are functions of~r. Here, A is the identity operator 1 or the time

derivative ot and, in the following, wjð~r; tÞ is used to denote either njð~r; tÞ ¼ uð~r; tÞ � EjðtÞ or

fjð~r; tÞ ¼ uð~r; tÞ � otEjðtÞ in contexts where the same procedure or formula can be applied to both of them.

We base the computation of the convolutions on the recursive relation

wjð~r; tÞ ¼ e�bðt�t1Þwjð~r; t1Þ þ ae�bt

Z t

t1

ebsA½Ej�ðsÞ ds; ð13Þ

which is evaluated using exact integration given that EjðtÞ ¼
P

m E
m
j T

mðtÞ. In order to derive a recursive

formula tailored for the computation of nn�1
j ð~rÞ ¼ njð~r; tn�1Þ, we set t ¼ tn�1 and t1 ¼ tn�2 in Eq. (13) which

gives

nn�1
j ð~rÞ ¼ a

b2Dt
bDt
	

� 1þ e�bDt


En�1
j þ a

b2Dt
1
	

� ð1þ bDtÞe�bDt


En�2
j þ e�bDtnn�2

j ð~rÞ: ð14Þ

Analogously, we recursively update convolutions which involve the time derivative of the electric field by

fn�1
j ð~rÞ ¼ a

bDt
1
	

� e�bDt


En�1
j � a

bDt
1
	

� e�bDt


En�2
j þ e�bDtfn�2

j ð~rÞ; ð15Þ

where fn�1
j ð~rÞ ¼ fjð~r; tn�1Þ.

Next, we focus on the derivation of a time stepping scheme for Eq. (3). The time stepping scheme is

based on Galerkin’s method where the temporal dependence of the electric field is piecewise linear, i.e.

multiply Eq. (3) with T nðtÞ and integrate with respect to time. This integration can be performed with either

exact or trapezoidal integration, and we form a linear combination of the two with the weights 6h and

1� 6h, respectively. Such a linear combination of different integration schemes is known as tunable inte-

gration [28]. Following this procedure, EjðtÞ in Eq. (4) is replaced by

1

Dt

Z 1

0

T nðtÞEjðtÞ dt ¼ hEnþ1
j þ ð1� 2hÞEn

j þ hEn�1
j

and, analogously, otEjðtÞ in Eq. (7) is given by ðEnþ1
j � En�1

j Þ=ð2DtÞ while o2t EjðtÞ in Eq. (6) is represented by

ðEnþ1
j � 2En

j þ En�1
j Þ=ðDtÞ2. This time discretization is known as the Newmark scheme [26] and the pa-

rameter h controls the degree of implicitness, where hP 1=4 guarantees unconditional stability [30]. For

consistency, we use the same procedure to interpret the convolutions in Eqs. (5), (8) and (9). Consequently,

we test a quantity wjð~r; tÞ with T nðtÞ to obtain

1

Dt

Z 1

0

T nðtÞwjð~r; tÞ dt ¼
1

Dt

Z 1

0

T nðtÞe�bðt�t1Þ dt
� �

wjð~r; t1Þ

þ
X
m

Em
j

1

Dt

Z 1

0

T nðtÞ ae�bt

Z t

t1

ebsA½T m�ðsÞ ds
� �

dt
� �

; ð16Þ

where we use exact integration with respect to s as previously for Eq. (13). We set t1 ¼ ðn� 1ÞDt and use
either exact or trapezoidal integration with respect to t in Eq. (16). Exact integration gives
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1

Dt

Z 1

0

T nðtÞnjð~r; tÞ dt ¼
a
b

1

6

 
� 1

2bDt
þ 1

ðbDtÞ2
� 1� e�bDt

ðbDtÞ3

!
Enþ1
j

þ a
b

2

3

 
� 2

ðbDtÞ2
þ 3� ð4� e�bDtÞe�bDt

ðbDtÞ3

!
En
j

þ a
b

1

6

 
þ 1

2bDt
þ e�bDtð2� e�bDtÞ

ðbDtÞ2
þ ð3� e�bDtÞe�bDt � 2

ðbDtÞ3

!
En�1
j

þ 1� e�bDt

bDt

� �2

nn�1
j ð~rÞ ð17Þ

and

1

Dt

Z 1

0

T nðtÞfjð~r; tÞ dt ¼
a
bDt

1

2

 
� 1

bDt
þ 1� e�bDt

ðbDtÞ2

!
Enþ1
j þ a

ðbDtÞ2
2

�
þ ð4� e�bDtÞe�bDt � 3

bDt

�
En
j

þ a
bDt

 
� 1

2
� 1

bDt
þ 2� ð3� e�bDtÞe�bDt

ðbDtÞ2

!
En�1
j þ 1� e�bDt

bDt

� �2

fn�1
j ð~rÞ ð18Þ

while trapezoidal integration results in

1

Dt

Z 1

0

T nðtÞnjð~r; tÞ dt ¼ aDt
bDt � ð1� e�bDtÞ

ðbDtÞ2

 !
En
j þ aDt

1� ð1þ bDtÞe�bDt

ðbDtÞ2

 !
En�1
j þ e�bDtnn�1

j ð~rÞ

ð19Þ
and

1

Dt

Z 1

0

T nðtÞfjð~r; tÞ dt ¼ a
1� e�bDt

bDt

� �
En
j � a

1� e�bDt

bDt

� �
En�1
j þ e�bDtfn�1

j ð~rÞ: ð20Þ

Following the above recipe for the derivation of the Newmark scheme, we represent the convolution in Eq.

(5) by forming a linear combination of Eqs. (17) and (19) weighted by 6h and 1� 6h, respectively. Similarly,
the convolutions in Eqs. (8) and (9) are represented by the linear combination of Eq. (18) weighted by 6h
and Eq. (20) weighted by 1� 6h. In this setting, nn�1

j and fn�1
j are updated recursively by Eqs. (14) and (15),

respectively.

A naive evaluation of the coefficients in the convolution stencils gives catastrophic cancellation when

bDt ! 0. Consequently, accuracy is lost within the time stepping algorithm, which can cause instabilities.

We expand such sensitive coefficients in Taylor series with 20 terms, which give roughly 16 accurate digits

for bDt < 1. The cancellation error in the original expressions for the coefficients is negligible for bDtP 1

and the formulas given above yield highly accurate results.
In order to arrive at a practical time integration scheme, we consider a contribution gni to Eq. (3), where

gni is of the form

gni ¼
X
j

Z
S
#ijð~rÞ

1

Dt

Z 1

0

T nðtÞwjð~r; tÞ dt
� �

dS

¼
X
j;e

Z
Se
#ijð~rÞ

1

Dt

Z 1

0

T nðtÞwjð~r; tÞ dt
� �

dS

¼
X
j;e;q

we
q#ijð~reqÞ

1

Dt

Z 1

0

T nðtÞwjð~req; tÞ dt
� �

: ð21Þ
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Here, the summation index j corresponds to a degree of freedom for the electric field and e is the index for

the element which occupies the surface Se. We use a quadrature scheme with the points~req and weights we
q

for element e, where q is an index for the quadrature points. We partition gni so that it can be expressed in
terms of three matrix–vector products and one vector. The partitioning is given by

fggn ¼ ½wþ1�fEg
nþ1 þ ½w0�fEg

n þ ½w�1�fEg
n�1 þ fwgn�1

; ð22Þ

where ½wþ1� is a matrix derived from Eq. (21) based on the appropriate combination of coefficients asso-

ciated with fEgnþ1
in Eqs. (17)–(20). The matrices ½w0� and ½w�1� are constructed similarly. The vector

fwgn�1
represents the rest of Eq. (21) and it is reassembled for each time step, however, given precomputed

and stored data which lowers the computation time to some extent.

Summarizing the time discretization of Eq. (3), we time step the system

½Aþ1�fEgnþ1 ¼ ½A0�fEgn � ½A�1�fEgn�1 � ðcDtÞ2 fnzzgn�1
�

þ ffuugn�1 þ ffvvgn�1
�
; ð23Þ

where

Aþ1½ � ¼ ½M � þ 1

2
ðcDtÞ½B� þ ðcDtÞ2 h½S�

	
þ ½nzzþ1� þ ½fuuþ1� þ ½fvvþ1�



;

A0½ � ¼ 2½M � � ðcDtÞ2 ð1
	

� 2hÞ½S� þ ½nzz0 � þ ½fuu0 � þ ½fvv0 �


;

A�1½ � ¼ ½M � � 1

2
ðcDtÞ½B� þ ðcDtÞ2 h½S�

	
þ ½nzz�1� þ ½fuu�1� þ ½fvv�1�



:

Here, the stiffness matrix associated with Eq. (4) is denoted ½S�, the mass matrix derived from Eq. (6) is

½M � and the ‘‘loss’’ matrix stemming from Eq. (7) is ½B�. It should be noted that Eq. (5) has been partitioned

into ½nzzþ1�fEg
nþ1

, ½nzz0 �fEg
n
, ½nzz�1�fEg

n�1
and fnzzgn�1

. Similarly, such a partitioning is also applied to Eqs. (8)
and (9).
3. Numerical results

We apply the proposed PML formulation to two test cases in order to evaluate its performance and
robustness. The tests deal with scattering from infinitely long cylindrical PEC bodies. An incident plane

wave ~Ei is imposed by the application of the boundary condition n̂�~Es ¼ �n̂�~Ei on the surface C0 of the

scatterer, where n̂ is the unit vector normal to C0, and we solve for the scattered field ~Es. The incident plane

wave ~Ei is given by

~Eið~r; tÞ ¼ ~E0 exp

2
4� t � k̂i �~r=c� t0

d0

 !2
3
5 sin x0ðt

h
� k̂i �~r=c� t0Þ

i
; ð24Þ

which provides a localized pulse in both time and frequency domain. Such an excitation is optimal in the
sense that the mean-square time-bandwidth product is the smallest possible [31]. The parameters t0, d0 and
x0 above are chosen so that the frequencies of interest are well excited and the value of ~Eið~r; tÞ is essentially
zero on C0 as the computation starts. In Eq. (24), the amplitude with polarization is given by
~E0 ¼ E0ð�x̂ sin/i þ ŷ cos/iÞ and the unit wave vector is k̂i ¼ x̂ cos/i þ ŷ sin/i, where /i is the angle of

incidence and E0 controls the magnitude of the incident field. The near-to-far (NTF) field transformation is

applied to a closed contour CNTF, which is located within the vacuum region between the scatterer C0 and

the PML extending from CPML. The PML is backed by a boundary condition n̂�~Es ¼~0 and we use a
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quadratic conductivity profile rð.Þ ¼ rmaxð.=dÞ2, where . is the distance from CPML and d is the thickness of
the PML.

The RCS is denoted r and it is computed from [8]

rð/sÞ ¼ lim
r!1

2pr
j~Esj2

j~Eij2
¼ k

4j~Eij2
jLz

�
þ ZN/j2 þ jL/ � ZNzj2

�
ð25Þ

given the fields in frequency domain, which are computed from the time domain fields by the discrete
Fourier transform. Here, k is the wavenumber, /s is the azimuthal angle for the scattered wave direction

and Z is the wave impedance. The scattering amplitudes ~N and ~L in Eq. (25) are given by

~N ¼
I
CNTF

~J sð~r0Þeþikr̂�~r0 dL0; ð26Þ
~L ¼
I
CNTF

~M sð~r0Þeþikr̂�~r0 dL0: ð27Þ

Here, we have the source point~r0 and the observation point~r ¼ rr̂, where r̂ ¼ x̂ cos/s þ ŷ sin/s. Fur-
thermore, the equivalent surface currents are given by ~J s ¼ n̂� ~H and ~M s ¼ �n̂�~E, where n̂ is the unit

normal pointing away from the region enclosed by CNTF.

The matrix ½Aþ1� in Eq. (23) is symmetric positive definite and we found it to be well conditioned for all

the problems considered so far. We use the conjugate gradient method to solve the system of linear

equations, where an incomplete Cholesky factorization of ½Aþ1� is used as a preconditioner. A relative

decrease of 10�14 in the residual norm was used as a termination condition for the iterative solver and, with

a zero fill-in preconditioner, roughly 10 iterations are required per time step.
3.1. Circular cylinder

The proposed PML formulation is validated against analytical results [32] for a PEC circular cyl-

inder. The bistatic RCS was computed for the grid shown in Fig. 1, where the thickness of the PML

is doubled so that we have a discretization with 16 cells in the radial direction. For this particular

discretization, we have a typical cell size h ¼ h0 and we use rmax ¼ r0, where r0d ¼ 0:014 S. This grid

is uniformly refined twice to give h ¼ h0=2 and h0=4 with rmax ¼ 2r0 and 4r0, respectively. In the

following, we use a time step which satisfies cDt=h ¼ 0:31 and denote the diameter of the circular
cylinder by d. The integration contour CNTF is a circle with the radius 0:6d and the PML extends from

the radius 0:7d.
The relative error e ¼ krn � rak=krak in the bistatic RCS is shown in Fig. 2 as a function of kd. Here,

k � k ¼ ½
R 2p
0
ð�Þ2 d/s�

1=2
and rn and ra is the numerically computed and analytic bistatic RCS. The number of

points per wavelength on the coarsest grid ranges from k=h0 ¼ 12:5 at kd ¼ 8 to the Nyquist limit k=h0 ¼ 2

at kd ¼ 52. We achieve a relative error less than 2% for k=h > 10 and this bound on the error is valid for a

broad frequency band, where the lowest frequency corresponds to k=h ’ 900.

In Fig. 3, the error is shown as a function of cell size h for three specific frequencies. Here, the symbols
(triangles and circles) show computed errors for h ¼ h0, h0=2 and h0=4 while the lines are least square fits to

the model e / ha. We find that the order of convergence a is limited to 1:4 < a < 2:3 for 8 < kd < 40.

Deviations from the expected order of convergence a ¼ 2 are attributed to the low resolution, mainly for

h ¼ h0, which most likely is not within the region of asymptotic convergence. Nevertheless, this is a strong

indication that the time domain FEM with PML converges toward the analytical solution with an error

proportional to h2.
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Fig. 4 shows a sample of the electric field as a function of time, where the sample is taken in the air region

between the circular cylinder and the PML. After the transients have decayed (t=Dt > 1500), the amplitude

is reduced six orders of magnitude as compared to the peak value of the scattered wave. We achieve similar

results for any point in the air region and this characteristic feature has been repeated for all scatterers

studied so far. The post transient field has mainly very high and very low frequency components, which are

poorly absorbed by the PML. Extensive numerical tests have not shown any signs of instabilities and these

tests include up to 200,000 time steps which satisfy 0:1 < cDt=h < 1:0.
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Fig. 4. Sample of the electric field as a function of time. The sample is taken in the air region between the circular cylinder and the

PML.
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3.2. Ogival cylinder

In the second test case, we compute the monostatic RCS for an ogival PEC cylinder, which has two

sharp corners supporting field singularities. Such sharp corners are known to lower the order of conver-

gence [33,34]. The cross section of the ogive occupies the region defined by the union of two circles with the
radii R ¼ ðb2 þ a2Þ=ð2aÞ and the centers along the y-axis at y ¼ �ðb2 � a2Þ=ð2aÞ. Here, we choose the width

2a ¼ 0:2 m and the length L ¼ 2b ¼ 1:0 m. The discretization for the ogival cylinder is shown in Fig. 5,

where the grid is truncated by an eight cells thick PML formulated in Cartesian coordinates with

rmaxd ¼ 0:014 S. The boundary CNTF for the NTF field transformation is indicated by the thick dashed line.

Here, we use a time step which satisfies cDt=h ¼ 0:15 and the grid has a typical cell size h ¼ 15 mm.

We computed the monostatic RCS for the ogive as a function of the azimuth angle measured counter

clockwise from the positive x-axis. The monostatic RCS computed by the proposed time domain FEM with

PML is shown by circles in Fig. 6 for L=k ¼ 0:5 and in Fig. 7 for L=k ¼ 3:5. The solid curves show the RCS
Fig. 5. Discretization of ogive with a ¼ 0:1 m and b ¼ 0:5 m. The grid is truncated by a PML formulated in Cartesian coordinates and

the NTF transformation boundary is indicated by the thick dashed line.
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Fig. 6. Monostatic RCS for ogival cylinder with the length 0:5k: circles – computed RCS, solid curve – spline interpolation of

computed RCS, and dashed curve – reference solution.
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Fig. 7. Monostatic RCS for ogival cylinder with the length 3:5k: circles – computed RCS, solid curve – spline interpolation of

computed RCS, and dashed curve – reference solution.
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based on a spline interpolation of the computed complex scattering amplitudes in Eqs. (26) and (27), where

we set the slope to be zero at the end points with the azimuthal angle 0� and 90�. The dashed curves show a

reference solution computed by the method of moments [35]. We estimate that the reference solution has an

error which is less than �0.1 dB. For the selected frequencies, we find that the deviation between the RCS

computed by the proposed method and the reference solution is less than 1.3 dB except around azimuth

angles with deep minima. As previously for the circular cylinder, the computations for the ogive showed no

signs of instabilities.
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4. Conclusion

We have developed and tested a new formulation for the PML in the context of the time domain FEM.
The formulation exploits Galerkin’s method in both space and time, where the electric field is expanded

spatially in terms of edge elements and temporally as a piecewise linear function. For the free space region,

we construct the Newmark time stepping scheme by forming a linear combination of exact and trapezoidal

integration for the temporal weak form. This technique is also applied to the convolutions which originate

from, in frequency domain, products of the dispersive anisotropic PML materials and the electric field. The

convolutions are updated efficiently in time domain by recursive formulas.

The proposed method was tested on scattering of electromagnetic waves from infinitely long PEC cyl-

inders with the cross section shaped as a circle and an ogive. A convergence study of the bistatic RCS for
the circular cylinder indicates that the proposed scheme converges toward the analytical result with an error

which is proportional to h2, where h is the typical cell size. We achieve a relative error, in the root-mean-

square sense, which is less than 2% when we use more than ten points per wavelength. This bound on the

error applies to at least six octaves in frequency. The ogival cylinder has two sharp corners which support

field singularities and, for this test case, we computed the monostatic RCS as a function of the azimuth

angle for L=k ¼ 0:5 and 3.5, where L is the length of the ogive. The computed results were compared to a

highly accurate reference solution and we found that, given the selected frequencies, the deviation is less

than 1.3 dB except for azimuths where the RCS has deep minima.
Extensive numerical tests have not shown any signs of instabilities and the tests include up to 200,000

time steps Dt which satisfies 0:1 < cDt=h < 1:0. For the iterative solution of the system of linear equations

involved in the time stepping algorithm, the iteration count for one time step is comparable with the

corresponding case without the PML material. Therefore, the additional computational cost is associated

with the explicit update of the recursive convolutions and this additional work is proportional to the

number of cells in the PML. The time integration scheme is directly applicable to three-dimensional

problems and it can be adapted to PML formulations for wave phenomena in e.g. acoustics and mechanics.

We conclude that the new time integration algorithm works in a robust way and gives high accuracy for a
wide frequency band of operation.
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